51 research outputs found

    A Reusable Component for Communication and Data Synchronization in Mobile Distributed Interactive Applications

    Full text link
    In Distributed Interactive Applications (DIA) such as multiplayer games, where many participants are involved in a same game session and communicate through a network, they may have an inconsistent view of the virtual world because of the communication delays across the network. This issue becomes even more challenging when communicating through a cellular network while executing the DIA client on a mobile terminal. Consistency maintenance algorithms may be used to obtain a uniform view of the virtual world. These algorithms are very complex and hard to program and therefore, the implementation and the future evolution of the application logic code become difficult. To solve this problem, we propose an approach where the consistency concerns are handled separately by a distributed component called a Synchronization Medium, which is responsible for the communication management as well as the consistency maintenance. We present the detailed architecture of the Synchronization Medium and the generic interfaces it offers to DIAs. We evaluate our approach both qualitatively and quantitatively. We first demonstrate that the Synchronization Medium is a reusable component through the development of two game applications, a car racing game and a space war game. A performance evaluation then shows that the overhead introduced by the Synchronization Medium remains acceptable.Comment: In Proceedings WCSI 2010, arXiv:1010.233

    QoCIM : A Meta-model for Quality of Context

    Get PDF
    International audienceIn the last decade, several works proposed their own list of quality of context (QoC) criteria. This article relates a comparative study of these successive propositions. The result is that no consensus has been reached about the semantic and the comprehensiveness of QoC criteria. Facing this situation, the QoCIM meta-model offers a generic, computable and expressive solution to handle and to exploit any QoC criterion within distributed context managers and context-aware applications. For validation purposes, QoCIM is successfully applied to the modelling of a set of simple and composite QoC criteria

    Extending Ambient Intelligence to the Internet of Things: New Challenges for QoC Management

    Get PDF
    International audienceQuality of Context (QoC) awareness is recognized as a key point for the success of context-aware computing solutions. At a time where the Internet of Things, Cloud Computing, and Ambient Intelligence paradigms bring together new opportunities for more complex context computation, the next generation of Multiscale Distributed Context Managers (MDCM) is facing new challenges concerning QoC management. This paper presents how our QoCIM framework can help application developers to manage the whole QoC life-cycle by providing genericity, openness and uniformity. Its usages are illustrated, both at design time and at runtime, in the case of an urban pollution context- and QoC-aware scenario

    An approach to design smart grids and their IT system by cosimulation

    Get PDF
    International audienceSmart grids are the oncoming generation of power grids, which rely on information and communication technologies to tackle decentralized and intermittent energy sources such as wind farms and photovoltaic plants. They integrate electronics, software information processing and telecommunications technical domains. Therefore the design of smart grids is complex because of the various technical domains and modeling tools at stake. In this article, we present an approach to their design, which relies on model driven engineering, executable models and FMI based cosimulation. This approach is illustrated on the use case of an insular power grid and allows to study the impact of power production decision

    Enabling Context-Aware Web Services: A Middleware Approach for Ubiquitous Environments

    Get PDF
    In ubiquitous environments, mobile applications should sense and react to environmental changes to provide a better user experience. In order to deal with these concerns, Service-Oriented Architectures (SOA) provide a solution allowing applications to interact with the services available in their surroundings. In particular, context-aware Web Services can adapt their behavior considering the user context. However, the limited resources of mobile devices restrict the adaptation degree. Furthermore, the diverse nature of context information makes diïŹƒcult its retrieval, processing and distribution. To tackle these challenges, we present the CAPPUCINO platform for executing context-aware Web Services in ubiquitous environments. In particular, in this chapter we focus on the middleware part that is built as an autonomic control loop that deals with dynamic adaptation. In this autonomic loop we use FraSCAti, an implementation of the Service Component Architecture (SCA) speciïŹcation, as the execution kernel for Web Services. The context distribution is achieved with SPACES, a ïŹ‚exible solution based on REST (REpresentational State Transfer ) principles and beneïŹting from the COSMOS (COntext entitieS coMpositiOn and Sharing ) context manage- ment framework. The application of our platform is illustrated with a mobile commerce application scenario that combines context-aware Web Services and social networks

    The smart grid simulation framework: model-driven engineering applied to cyber-physical systems

    Get PDF
    International audienceSmart grids are complex systems for which simulation offers a practical way to evaluate and compare multiple solutions before deployment. However, the simulation of a Smart Grid requires the development of heterogeneous models corresponding to electrical, information processing, and telecommunication behaviors. These heterogeneous models must be linked and analyzed together in order to detect the influences on one another and identify emerging behaviors. We apply model-driven engineering to such cyber-physical systems combining physical and digital components and propose SGridSF, the Smart Grid Simulation Framework, which automates tasks in order to ensure consistency between different simulation models. This framework consists mainly of a domain specific language for modeling a cosimulation unit, called CosiML for Cosimulation Modeling Language, a domain specific language for modeling the functional architecture of a Smart Grid, called SGridML for Smart Grid Modeling Language, and a tool implementing different transformation rules to generate the files and scripts for executing a cosimulation. Finally, we illustrate the use of SGridSF on the real use case of an islanded grid implementing diesel and renewable sources, battery storage and intelligent control of the production. We show the sequencing of automatic generation tasks that minimizes the effort and the risk of error at each iteration of the process

    Mastering interactions with Internet of Things platforms through the IoTVar middleware

    Get PDF
    International audienceThe rising popularity of the Internet of Things (IoT) has led to a plethora of highly heterogeneous, geographically dispersed devices. In recent years, IoT platforms have been used to provide a variety of services to applications such as device discovery, context management, and data analysis. However, the lack of standardization currently means that each IoT platform comes with its own abstractions, APIs, and interactions. As a consequence, programming the interactions between an application and an IoT platform is often time consuming, error prone, and depends on the developers' level of knowledge about the IoT platform. To address these issues, we propose offering to application developers on the client side the possibility to declare variables that are automatically mapped to sensors and whose values are transparently updated with sensor observations. For this purpose, we introduce IoTVar, a middleware between IoT applications and platforms. In IoTVar, all the necessary interactions with IoT platforms are managed by proxies. This paper presents IoTVar integrated with the FIWARE platform, which is used for developing IoT Future Internet applications. We also report results of some experiments performed to evaluate IoTVar, showing IoTVar reduces the effort required to declare and manage IoT variables and its impact in terms of CPU, memory, and energy

    Enabling Context-Aware Web Services: A Middleware Approach for Ubiquitous Environments

    Get PDF
    In ubiquitous environments, mobile applications should sense and react to environmental changes to provide a better user experience. In order to deal with these concerns, Service-Oriented Architectures (SOA) provide a solution allowing applications to interact with the services available in their surroundings. In particular, context-aware Web Services can adapt their behavior considering the user context. However, the limited resources of mobile devices restrict the adaptation degree. Furthermore, the diverse nature of context information makes diïŹƒcult its retrieval, processing and distribution. To tackle these challenges, we present the CAPPUCINO platform for executing context-aware Web Services in ubiquitous environments. In particular, in this chapter we focus on the middleware part that is built as an autonomic control loop that deals with dynamic adaptation. In this autonomic loop we use FraSCAti, an implementation of the Service Component Architecture (SCA) speciïŹcation, as the execution kernel for Web Services. The context distribution is achieved with SPACES, a ïŹ‚exible solution based on REST (REpresentational State Transfer ) principles and beneïŹting from the COSMOS (COntext entitieS coMpositiOn and Sharing ) context manage- ment framework. The application of our platform is illustrated with a mobile commerce application scenario that combines context-aware Web Services and social networks

    Mobile Databases: a Selection of Open Issues and Research Directions

    Get PDF
    International audienceThis paper reports on the main results of a specific action on mobile databases conducted by CNRS in France from October 2001 to December 2002. The objective of this action was to review the state of progress in mobile databases and identify major research directions for the French database community. Rather than provide a survey of all important issues in mobile databases, this paper gives an outline of the directions in which the action participants are now engaged, namely: copy synchronization in disconnected computing, mobile transactions, database embedded in ultra-light devices, data confidentiality, P2P dissemination models and middleware adaptability
    • 

    corecore